Week 3 Ch. 2 Proof Methods

Worksheet 2

Prove	the	following	statements
11010	uic	10110 W III S	Butterne

Write down what is the assumption/supposition and what are you trying to prove.

Remember definitions are your tools (or best friend)! Stick to the definitions.

1.	Let a, b	and c	be integers.	If a	divides h.	then a	divides bc.
1.	\perp ct α , ν .	, and c	oc micegois.	11 0	arviaco D	, unon a	arviaco be

- a. Assumption:
- b. To prove:
- c. Proof:

2. If x is an integer, then $x^2 + x + 3$ is an odd integer.

- a. Assumption:
- b. To prove:
- c. Proof:

3. The product of consecutive integers is an even integer.

- a. Assumption:
- b. To prove:
- c. Proof:

MATH 258-02 1 Harry Yan

Week 3 Ch. 2 Proof Methods

4. Let x be an integer. If 4 does not divide x^2 , then x is odd.

a. Assumption:	
b. To prove:	
c. Proof:	
5. Let <i>x</i> be an integer. If 8 does not d	ivide $x^2 - 1$, then x is even.
a. Assumption:	
b. To prove:	
c. Proof:	
6. If a, b, c are integers such that $a b$	and $a c$, then $a (b + c)$.
a. Assumption:	
b. To prove:	
c. Proof:	

MATH 258-02 2 Harry Yan

Week 3 Ch. 2 Proof Methods

7. Let a , b and c be positive integers. The integer ac divides bc if and only if the							
	a divide	a divides b.					
	a.	Assumption:					
	b.	To prove:					
	c.	Proof:					
8.	Let x be	a real number. The quadratic $x^2 + 2x + 1 = 0$ if and only if $x = -1$.					
	a.	Assumption:					
	b.	To prove:					
	c.	Proof:					
9.	Let x be	an integer. If $9x + 5$ is even, then x is odd.					
	a.	Assumption:					
	b.	To prove:					
	c.	Proof:					

10. Let x be an integer. x^2 is even if and only if x is even. a. Assumption: b. To prove: c. Proof: 11. Let a, b be integers. ab is even if and only if a is even or b is even. a. Assumption: b. To prove: c. Proof: 12. Disprove by finding a counterexample: For all real numbers a and b, if $b^2 > a^2$, then b > a